
1

MODEL ERD - standard

ENCODER RESOLVER DIGITIZER USER'S GUIDE

2

Table of Contents

1 Revision History 3

1.1 April 13, 2020 separate into three different documents: standard, open collector,

differential output. 3

2 ERD Features 3

3 Mounting Dimensions 4

4 Specifications 5

5 RESOLVER CONNECTION 6

5.1 Resolver cable color codes 7

5.2 Cabled Resolver connection 7

6 ENCODER CONNECTIONS 7

6.1 Optically isolated incremental encoder signals 8

6.2 NON optically isolated incremental encoder signals 9

6.3 Diagram showing the Jumper locations. 9

Note: Using the internal power supply to drive output signals defeats the optical isolation.

10

7 POSITON saved on loss of Power 11

8 POSITION READOUT 11

8.1 TCP/IP ETHERNET DATA 11

8.2 ‘p’ command 11

8.3 ‘z’ command 11

8.4 ‘x’ command 11

8.5 ‘d-‘ command 11

8.6 ‘h’command 12

8.7 ‘odddd’command 12

8.8 The Ethernet device address 12

8.9 ‘nAAA’ command 13

8.10 ‘wBBB’ command 13

3

9 Verify the TCP/IP option 13

10 Appendix B – visual C++ sample code 14

11 TROUBLESHOOTING 17

11.1 Cumulative Electrical noise 17

11.2 Non Cumulative Electrical noise 17

11.3 Polarity reversal 17

11.4 Poor mechanical connections 17

1 Revision History

1.1 April 13, 2020 separate into three different documents:

standard, open collector, differential output.

2 ERD Features
For environments like vacuum and radiation, encoders are not robust enough to

withstand the rigors imposed by these demanding situations. Since resolvers have

a physical construction similar to that of electric motors, resolvers can be used

where encoders fail. However; there are many more control systems available that

is encoder compatible than there are that have resolver compatibility. To bridge

this difference between encoders and resolvers, Empire Magnetic Inc. has

developed an electronics interface (ERD) that solves this problem. An additional

feature provides absolute positional information via an Ethernet interface.

The ERD provides excitation signals to a resolver, and decodes the sine and cosine

return signals to provide position feedback.

The output of the ERD is in two formats. The first is incremental, encoder type A, B,

Z suitable for quadrature detection. The standard product is TTL compatible,

1024 count pre quadrature, 4096 count post quadrature. The Z marker pulse

happens once per resolver cycle. When connected with a single speed resolver,

there is one very narrow marker pulse per revolution.

The second output is an up/down counter intended to provide absolute position

over a range of +/- 2 ^31 or +/- 2147483648 counts. At 4096 counts per

4

revolution that is +/- 524,288 revolutions. Resolutions of 8192 and 16,384 counts

per revolution are available.

The up/down counter output is available over Ethernet. Commands to set a zero,

read position, read velocity, or install an offset count are provided. Sample code

written in visual studio is also available.

Auto save feature: The ERD has an auto save that captures the last known

absolute 31 bit position in the event of power loss. If the mechanics move less than

one revolution when the AC power goes off the unit will compute the correct 31 bit

absolute position when power is restored. This feature uses FRAM technology and

can handle over ten trillion power cycles.

The ERD is powered by a universal power supply which operates from Line AC

voltages 95 to 264 VAC 50/60hz.

The ERD is a single axis unit intended to operate with one resolver. The Ethernet

address can be changed to provide individual addresses.

This set of electronics is intended to be operating in a typical industrial or lab

environment, where the resolvers are on long cables leading to environmental

areas such as vacuum chambers.

Simulated Incremental Encoder interface

Model ERD converts brushless resolver signals to two phase quadrature signals

similar to the signals generated by an incremental encoder. A once-per-rev index

pulse is also generated. These three signals are available on complementary TTL

compatible open collector outputs, which are internally "pulled up" to an external 5

volts through 1,000 ohms.

Incremental resolution is set at 1,024 cycles per revolution. Common quadrature

detection circuitry will decode this to provide 4,096 counts per

revolution. Additional resolutions are available upon request.

The simulated encoder interface is available in two flavors. Optically isolated

where the device receiving the quadrature signals must supply +5 VDC power to

the ERD. Non optically isolated where the ERD supplies +5VDC power to the

quadrature output stage resulting in TTL compatible outputs.

3 Mounting Dimensions

5

4 Specifications

Specifications

6

Power 95-264 VAC,47-63Hz, 30W

Isolated interface 5VDC @ 150 mA

Operating temperature 0 to 60°C

Maximum velocity 40 rev/sec

Accuracy .3°

Resolver Output 7VRMS, 1kHz, 100mA

Encoder Outputs (open collector, 1k to +5V)

Sink current 30 mA

Quadrature 90°±10%

Index pulse At 90° ½ width of channel A

5 RESOLVER CONNECTION
Cabling from the resolver is to be connected to the removable screw terminal

connector of the ERD, according to the wire color assignments below. Cable

conductors should be stripped back 3/16 inch or so, inserted into the appropriate wire

aperture, and screwed down. Verify proper insertion with a light pull test. Cable

conductors are 22AWG twisted pair.

7

5.1 Resolver cable color codes

Resolver Standard Resolver Vacuum & Radiation w/ Cable

Rotor R1 Red/White Gray Green

Rotor R2 Black/White White BlackGreen

Stator S1 Red Red Red

Stator S3 Black Black BlackRed

Stator S2 Yellow Yellow White

Stator S4 Blue Blue BlueWhite

5.2 Cabled Resolver connection

6 ENCODER CONNECTIONS

8

6.1 Optically isolated incremental encoder signals
Are available on the 25 pin "D" connector on the end of the ERD. Signal assignments are listed by pin

number below. Note that the optical interface requires application of +5VDC at up to 50 mA to power

the interface. This power comes in on the 5V_ISO_POWER_IN connector on pin 24 and 5V_ISO_RTN on

pin 14-19.

Signal Pin Number

Channel A+ 1

Channel A- 2

Channel B+ 3

Channel B- 4

Channel Z+ 5

Channel Z- 6

9

Shield 8

5V ISO RTN 14-19

+5V ISO POWER IN 24

6.2 NON optically isolated incremental encoder signals
Are available on the 25 pin "D" connector on the end of the ERD. In this mode the ERD supplies the

power needed to run the interface plus and extra 100ma to power external equipment. Note that in

this configuration the interface is no longer optically isolated. Signal assignments are listed by pin

number below. Note that the user must remove the four side screws and detach the ERD cover. Locate

circuit board jumpers JU401 and JU402 near the encoder connector. Install the jumper block bridging

the two pins of jumper JU402 to connect encoder ground to ERD power supply ground. Install jumper

JU401 to connect ERD 5 volts to the encoder connector.

6.3 Diagram showing the Jumper locations.

10

Note: Using the internal power supply to drive output signals defeats the

optical isolation.
Signal Pin Number

Channel A+ 1

Channel A- 2

Channel B+ 3

Channel B- 4

Channel Z+ 5

Channel Z- 6

11

Shield 8

5V RTN 14-19

+5V POWER OUT 24

7 POSITON saved on loss of Power
When the ERD detects an impending loss of power it saves the current position into FRAM and halts the

processor. When the unit powers up it will recall the last position from the FRAM and adjust the

position to compensate for any movement of the resolver that occurred within one revolution of the

resolver. If the resolver moves more than one revolution when power is off the position will not be

correct. This works well with systems that are equipped with mechanical brakes that on loss of power

allow the motor to move a little bit before they mechanically clamp the shaft in place.

The FRAM supports 10 trillion reads and writes without loss of information.

8 POSITION READOUT

8.1 TCP/IP ETHERNET DATA

Model EDR provides a TCP/IP connection that processes several Ascii character commands:

8.2 ‘p’ command

Reports a position as a string of ASCII digits terminated with a carriage return/line feed. At

power on the EDR reads the absolute position of the resolver that was stored in the FRAM and

then keeps track of the position until the next power cycle.

8.3 ‘z’ command

Will make the current position zero.

8.4 ‘x’ command

Will close the Ethernet socket connection.

8.5 ‘d-‘ command

12

Will cause the position to be negated before it is reported.

8.6 ‘h’command

Will set the position to zero on the next index marker pulse.

8.7 ‘odddd’command

Sets a position offset. The position is given as a signed decimal number following the character

‘o’. Example is o+500. This means that 500 will be added to the position before it is reported.

8.8 The Ethernet device address

Default is 192.168.xxx.yyy where xxx and yyy are specified on the dip switches on the box. Your

IT administrator will assign you values for xxx and yyy. The values on the dip switches are in

binary and switch 1 on each dip switch is the most significant bit. If the switch is up it is a ‘1’

and if it is down it is a ‘0’. So if XXX is set to 0000001 and YYY is set to 0000111 the address of

the unit is 192.168.1.7

If you want 192.168.10.47 then XXX is 0001010 and YYY is 101111 since 10 in binary is 0001010

and 47 in binary is 101111.

13

8.9 ‘nAAA’ command

Will let you change the value of the 192.

8.10 ‘wBBB’ command

Will let you change the value of the 168.

Once you change these values the unit will reset and respond to the new IP address. You have

to hit the reset button to restore the values to 192.168

9 Verify the TCP/IP option
You will need a small program written in C to open a socket connection and send/receive data

to the EDR unit.

The C program will need to contain the Ethernet address of the EDR unit (192.168.xxx.yyy). See

sample code written using Visual studio 2013 shown in Appendix B. This is a simple console

application.

If your IT administrator wants a different IP address than 192.168 the address can be changed

using the nAAA and wBBB commands. The values for nAAA and WBBB are stored in the non-

volatile memory so they are retained if you cycle power.

14

10 Appendix B – visual C++ sample code

// TCP send receive.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

#define _WINSOCK_DEPRECATED_NO_WARNINGS

/*
Create a TCP socket
*/

#include<stdio.h>
#include<winsock2.h>

#pragma comment(lib,"ws2_32.lib") //Winsock Library

int main(int argc, char *argv[])
{
WSADATA wsa;
SOCKET s;
struct sockaddr_in server;
char message[20], server_reply[10000];
int recv_size;

int xx;

printf("\nInitialising Winsock...");
if (WSAStartup(MAKEWORD(2, 2), &wsa) != 0)
{
printf("Failed. Error Code : %d", WSAGetLastError());
return 1;
}

printf("Initialised.\n");

//Create a socket
if ((s = socket(AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)

15

{
printf("Could not create socket : %d", WSAGetLastError());
}

printf("Socket created.\n");

server.sin_addr.s_addr = inet_addr("192.168.1.7");
server.sin_family = AF_INET;
server.sin_port = htons(255);

//Connect to remote server
if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
{
puts("connect error");
char e = getchar();

return 1;
}

puts("Connected");

for (xx = 0; xx < 2000; xx++)
{

//Send some data
Message[0] = ‘p’;
if (send(s, message, strlen(message), 0) < 0)
{
puts("Send failed");
char d = getchar();
return 1;
}
puts("Data Send\n");

//Receive a reply from the server
if ((recv_size = recv(s, server_reply, 10000, 0)) == SOCKET_ERROR)
{
puts("recv failed");
}

printf(" size %d\n", recv_size);
puts("Reply received");

16

//Add a NULL terminating character to make it a proper string before printing
server_reply[recv_size] = '\0';
puts(server_reply);

puts("press key to continue\n");
printf("xx %d\n", xx);

}
// tell the EDR to close its socket.
Message[0] = ‘x’;
if (send(s, message, strlen(message), 0) < 0)
{
puts("Send failed");
char d = getchar();
return 1;
}
puts("Data Send x\n");

// disconnect socket

// cleanup
closesocket(s);
WSACleanup();

puts("press key to continue\n");
char c = getchar();
return 0;
}

17

11 TROUBLESHOOTING

11.1 Cumulative Electrical noise
Electronic switching motor drives create large amounts of

electrical noise which may occasionally generate position errors in

electronic feedback devices. Any accumulation of noise related

positioning error may be eliminated by having the motor controller

execute a "Go Home" instruction (GH command). This command

should be included in repetitive operations where possible to

insure accuracy.

11.2 Non Cumulative Electrical noise
You may experience a jitter of a few counts when the drive is power on. This is

because the switch-mode drive powering the motor coupes high frequency noise to

the motor shaft which needs to find a way back to the ground the drive uses.

Results improve if you directly ground the case of the motor resolver to the same

earth ground used by the drive so this noise does not try to find its way back to the

drive through the ERD ‘s electronics.

11.3 Polarity reversal
If the polarity of the closed loop position report is negative,

exchange red and black motor wires to reverse motor direction, or

exchange red and black resolver wires to reverse encoder output

direction. If it is not within a few counts, the motor controller is

not getting ERD signals. Verify that the encoder interface is

getting 5 volt power from the control. Verify proper resolver and

encoder connections.

11.4 Poor mechanical connections
Bad resolver coupling and mounting or even low motor drive

current settings can contribute to position report error.

